Jump to contentJump to search
Photo of

Wissenschaftliche Mitarbeiterin

Postadresse
Universitätsstr. 1, 40225 Düsseldorf
Besucheradresse
Ulenbergstraße 127, 40225 Düsseldorf

Building: 37.03
Floor/Room: 2.22
Nordrhein-Westfalen
Bundesrepublik Deutschland
+49 211 81-15349
https://www.sozwiss.hhu.de/institut/abteilungen/kommunikations-und-medienwissenschaft/kmw-i/birte-keller

Birte Keller, M. A., studied Social Sciences and Political Communication at Heinrich Heine University in Düsseldorf. In 2019, she worked as a research assistant at the chair of Prof. Dr. Marcinkowski, where she supported a project of the Volkswagen Foundation as part of the project series "Artificial Intelligence - Its Impact on Tomorrow's Society". Since 2020, she has been a research associate at the Chair Communication and Media Studies I of the Institute of Social Sciences at Heinrich Heine University Düsseldorf, where she has been working on the project "Responsible Academic Performance Prediction" (RAPP) since 2021.

Current project: Responsible Academic Performance Prediction (RAPP)

Peer-reviewed

Lünich, M., Keller, B., & Marcinkowski, F. (2024). Diverging Perceptions of Artificial Intelligence in Higher Education: A Comparison of Student and Public Assessments on Risks and Damages of Academic Performance Prediction in Germany. Computers and Education: Artificial Intelligence, 7, 1-15. https://doi.org/10.1016/j.caeai.2024.100305

Lünich, M.,  & Keller, B. (2024). Explainable Artificial Intelligence for Academic Performance Prediction. An Experimental Study on the Impact of Accuracy and Simplicity of Decision Trees on Causability and Fairness Perceptions. In ACM Conference on Fairness, Accountability, and Transparency (ACM FAccT ’24), June 3–6, 2024, Rio de Janeiro, Brazil. https://doi.org/10.1145/3630106.3658953

Lünich, M., Keller, B., & Marcinkowski, F. (2024). Fairness of Academic Performance Prediction for the Distribution of Support Measures for Students: Differences in Perceived Fairness of Distributive Justice Norms. Technology, Knowledge and Learning, 29(2), 1079–1107. https://doi.org/10.1007/s10758-023-09698-y

Esau, K., Wilms, L., Baleis, J. & Keller, B. (2023). For Deliberation Sake, Show Some Constructive Emotion! How Different Types of Emotions Affect the Deliberative Quality of Interactive User Comments. Javnost - The Public, 30(4), 472-495. https://doi.org/10.1080/13183222.2023.2171217

Keller, B., Lünich, M., & Marcinkowski, F. (2022). How Is Socially Responsible Academic Performance Prediction Possible? Insights From a Concept of Perceived AI Fairness. In F. Almaraz-Menéndez, A. Maz-Machado, C. López-Esteban, & C. Almaraz-López (Eds.), Strategy, Policy, Practice, and Governance for AI in Higher Education Institutions (pp. 126–155). IGI Global. https://doi.org/10.4018/978-1-7998-9247-2.ch006

Starke, C., Baleis, J., Keller, B., & Marcinkowski, F. (2022). Fairness perceptions of algorithmic decision-making: A systematic review  of the empirical literature. Big Data & Society, 9(2). https://doi.org/10.1177/20539517221115189

Kieslich, K., Keller, B., & Starke, C. (2022). Artificial intelligence ethics by design. Evaluating public perception on the importance of ethical design principles of artificial intelligence. Big Data & Society, 9(1), 1–15. https://doi.org/10.1177/20539517221092956

Working Paper & Factsheets

Kieslich, K., Starke, C., Došenović, P., Keller, B., & Marcinkowski, F. (2020). Artificial Intelligence and Discrimination. How does the German public think about the discriminatory impact of artificial intelligence? Factsheet No. 2 of the Meinungsmonitor Künstliche Intelligenz [Opinion Monitor Artificial Intelligence].

Došenović, P., Keller, B., & Marcinkowski, F. (2020). Artificial intelligence fighting the COVID-19 pandemic. How does the German population feel about the utilization of AI? Factsheet No. 1 of the Meinungsmonitor Künstliche Intelligenz [Opinion Monitor Artificial Intelligence].

Baleis, J., Keller, B., Starke, C., & Marcinkowski, F. (2019). Cognitive and Emotional Response to Fairness in AI – A Systematic Review. Working Paper Series: Fairness in Artificial Intelligence Reasoning, 3.

Keller, B., Baleis, J., Starke, C., & Marcinkowski, F. (2019). Machine Learning and Artificial Intelligence in Higher Education: A State-of-the-Art Report on the German University Landscape. Working Paper Series: Fairness in Artificial Intelligence Reasoning, 1.

Keller, B., Lünich, M., & Marcinkowski, F. (2024). Die Interdependenz von Learning Analytics und Studierenden: Erkenntnisse aus fünf Jahren Forschung zu studentischen Wahrnehmungen – Implikationen einer sozialverantwortlichen KI-Implementierung. [The interdependence of learning analytics and students: Insights from five years of research on student perceptions - implications of socially responsible AI implementation.] Presentation at the Conference "Learning Analytics, Artificial Intelligence und Data Mining in der Hochschulbildung" (Learning AID) in Bochum (September 02-03, 2024).

Lünich, M., Keller, B., & Marcinkowski, F. (2023). Die studentische Wahrnehmung von Learning Analytics und ihre Konsequenzen für Einstellungen, Präferenzen und Verhaltensintentionen am Beispiel von Academic Performance Prediction - Ergebnisse einer Repräsentativbefragung und Implikationen für die Einführung von KI an der Hochschule. [Student perceptions of learning analytics and their consequences for attitudes, preferences, and behavioral intentions using Academic Performance Prediction as an example - results of a representative survey and implications for the adoption of AI in higher education.] Presentation at the Conference "Learning Analytics, Artificial Intelligence und Data Mining in der Hochschulbildung" (Learning AID) in Bochum (August 28-29, 2023).

Keller, B. (2023). Legitime KI? Eine Dokumentenanalyse der bildungspolitischen Rechtfertigung des Einsatzes künstlich intelligenter Systeme. [Legitimate AI? A Document Analysis of the Educational Policy Justification of the Use of Artificially Intelligent Systems.] Presentation at the Annual Meeting of the DGPUK-Division "Communication and Politics" in Düsseldorf (June 28-30, 2023).

Maxhuni, A., Lünich, M., Keller, B., & Marcinkowski, F. (2023). Hegemoniale Technologieimplementierung an der Hochschule - Eine qualitative Analyse der Schadenswahrenhmung betroffener Studierender bei der Einführung von Dropout Detection. [Hegemonic Technology Implementation in Higher Education - A Qualitative Analysis of Affected Students' Harm Perception in the Adoption of Dropout Detection.]. Presentation at the 68th Annual Conference of the German Communication Association (DGPuK) in Bremen (May 18-20, 2023).

Lünich, M., Keller, B., & Marcinkowski, F. (2022). The effects of students’ distributive justice norm preferences on the evaluation of Artificial Intelligence in higher education. Presentation at the Workshop – (Un)fairness of Artificial Intelligence hosted by the Research Priority Area Human(e) AI in Amsterdam, Netherlands (October 27-28, 2022).

Kieslich, K., Dosenovic, P., Marcinkowski, F., & Keller, B. (2020, Oktober). Artificial Intelligence: A promising future or a serious threat? An investigation into media coverage and public perceptions of AI in Germany. Presentation at the 8th European Communication Konferenz (ECREA) in the Audience and Receptions Studies Section in Braga, Portugal (October 02-05, 2020).

Esau, K., Baleis, J., Keller, B., & Wilms, L. (2020). For Deliberation Sake Show Some Constructive Emotion! How different types of emotions affect the deliberative quality of interactive user comments. Presentation at the 70th Annual International Communication Association Conference (ICA), Open Communication, in Gold Coast, Australia (May 21-25, 2020).

Esau, K., Baleis, J., Keller, B., & Wilms, L. (2019). For Deliberation Sake Show Some Constructive Emotion! How different types of emotions affect the deliberative quality of subsequent user comments. Presentation in the Panel Passionate argument or emotional blackmail? Investigating the role of emotions in public deliberation. ECPR General Conference in Wroclaw, Poland (September 04-07, 2019).

Responsible for the content: